Trustworthy AI

Al integrar modelos de IA en entornos en los que los estándares de compliance son importantes, Mosaic Factor ayuda a las empresas a gestionar la gobernanza de datos mediante la aplicación de soluciones Trustworthy AI.

Ver solution

Datos Sintéticos

Los datos sintéticos son datos artificiales generados a partir de datos originales utilizando un modelo entrenado para reproducir sus características y estructura.

Ver solution

Modelos Descriptivos

Los modelos descriptivos tienen como objetivo describir patrones, relaciones y estructuras dentro de los datos. No predicen resultados futuros, pero proporcionan información sobre los fenómenos existentes.

Ver solution

Modelos Predictivos

El modelado predictivo, también conocido como análisis predictivo, es una disciplina que utiliza técnicas estadísticas, matemáticas y de inteligencia artificial para predecir resultados futuros basados en datos históricos.

Ver solution

LLMs

En Mosaic Factor, nos centramos en la creación de LLM específicos de sector (o modelos lingüísticos ligeros) para nuestras organizaciones clientes.

Ver solution

Gemelos Digitales

Para supervisar y optimizar los activos de la empresa en tiempo real , Mosaic Factor utiliza gemelos digitales. Éstos pueden predecir fallos, detectar ineficiencias y mejorar la toma de decisiones mediante el uso de datos.

Ver solution

Data Enhanced Products

A través de diferentes fuentes de datos (es decir, pruebas físicas) y modelos de ML y, por lo general, en combinación con nuestras soluciones de gemelos digitales, nuestra solución de mejora de datos puede aprender, predecir y simular resultados para proporcionar configuraciones automáticas de productos que resulten en una mejora de productos y componentes durante el proceso de desarrollo.

Ver solution

Data As a Service Products

Data as a Service (DaaS) es un modelo basado en la nube que permite a las empresas acceder, gestionar y analizar datos bajo demanda, sin necesidad de una amplia infraestructura local

Ver solution

Mantenimiento Predictivo

Para los modelos de mantenimiento predictivo, utilizamos tanto datos históricos como datos en tiempo real para anticipar fallos de los equipos o necesidades de mantenimiento. Al analizar los datos de los sensores, los registros de mantenimiento y otra información relevante, podemos programar el mantenimiento de forma proactiva, reducir el tiempo de inactividad y prolongar la vida útil de la maquinaria.

Ver solution

Previsión de Demanda y Coste

Nuestros modelos predictivos ayudan a las empresas a pronosticar la demanda de productos o servicios. Mediante el análisis de los datos históricos de ventas, la estacionalidad, los factores económicos y los eventos externos, podemos optimizar los niveles de inventario, asignar los recursos de manera eficiente y minimizar el exceso de existencias o los desabastecimientos.

Ver solution

Quality Analytics

Identificamos patrones que se correlacionan con defectos o problemas de calidad, lo que permite a las empresas tomar medidas correctivas temprano y mantener altos estándares de calidad.

Ver solution

Inventory Management

Utilizamos modelos predictivos para optimizar los niveles de inventario teniendo en cuenta factores como el tiempo de entrega, la variabilidad de la demanda y los costes de almacenamiento.

Ver solution

Supply Chain Management

Podemos utilizar análisis de datos históricos y en tiempo real para gestionar la cadena de suministro, optimizar el transporte y garantizar la entrega a tiempo de los productos.

Ver solution

Tendencias de Mercado

Nuestros modelos predictivos analizan los datos del mercado, el comportamiento de los consumidores y los factores externos para comprender los patrones, identificar tendencias y anticipar cambios.

Ver solution

Market Understanding

Nuestros modelos descriptivos de IA proporcionan información valiosa para la toma de decisiones y la comprensión de los sistemas complejos de las organizaciones.

Ver solution

Exploración de Patrones

Nuestros modelos descriptivos de IA proporcionan información valiosa para la toma de decisiones y la comprensión de los sistemas complejos de las organizaciones.

Ver solution

Logística

Logistics

La mayor prioridad de Mosaic Factor en logística es compartir datos clave entre los diferentes actores de la cadena de suministro para optimizar el rendimiento y gestionar la sostenibilidad mitigando el impacto de estas operaciones.

Ver industry

Automoción

Industría Automoción

Mosaic Factor aplica soluciones de IA en diversos aspectos de la industria de la automoción, generalmente mejorando los vehículos y sus componentes durante su desarrollo.

Ver industry

Mobility

Mobility

La mayor prioridad de Mosaic Factor en Movilidad es optimizar los sistemas de transporte para la movilidad de las personas, mejorando al mismo tiempo la seguridad general y la sostenibilidad de las soluciones de transporte.

Ver industry

Corporate Services

Corporate Services

Nuestro aprendizaje automático y algoritmos complejos ayudan a las organizaciones a gestionar el cumplimiento normativo y el servicio al cliente para aumentar el nivel de servicio de su organización al tiempo que optimizan el tiempo de resolución de varios procesos.

Ver industry

Industria

Manufacturing

La mayor prioridad de Mosaic Factor en sector de fabricación es ayudar a nuestros clientes a reducir costes, aumentar la sostenibilidad y optimizar la cadena de producción.

Ver industry

Healthcare

Healthcare

La mayor prioridad de Mosaic Factor en el sector sanitario es hacer uso de los datos para mejorar la atención y el seguimiento de los pacientes de forma segura, optimizar los recursos de los sistemas de salud y facilitar la labor de los profesionales sanitarios.

Ver industry

Soluciones

Data As a Service Products

Data as a Service (DaaS) es un modelo basado en la nube que permite a las empresas acceder, gestionar y analizar datos bajo demanda, sin necesidad de una amplia infraestructura local.

DaaS proporciona datos, normalmente a través de APIs, servicios web u otras interfaces. Este modelo permite a las empresas acceder a una amplia gama de fuentes de datos, incluidas bases de datos públicas, datos propios y datos agregados de varios canales.

También puede generar valor para su empresa, diversificando su línea de servicios.

Proceso Data As a Service

Para crear nuevos servicios basados en datos, primero necesitamos gestionar y ampliar su cartera de datos:

1. Data Scouting

Mapee y evalúe a los proveedores y consumidores de datos para realizar una inspección técnica profunda de los datos y servicios ofrecidos para ampliar su cartera de datos.

El servicio de exploración de datos es una solución rápida y eficaz para descubrir oportunidades de adquisición o intercambio de datos. Mapea y evalúa a los proveedores de datos y a los consumidores directamente relacionados con su negocio y realiza una inspección técnica profunda de los datos y servicios ofrecidos.

El proceso de mapeo ayuda a su organización a consolidar y ampliar las colaboraciones, contratar proveedores, identificar a los socios de datos adecuados y probar sus ofertas.

    • PREP: Preparación de criterios para la elaboración de perfiles y la preselección de fuentes de datos.
    • SCOUTING: Identificación de fuentes de datos que cumplen con los criterios de preselección.
    • ANÁLISIS: Perfilado de proveedores de datos y soluciones de datos, clasificando las ofertas por coste y valor añadido.
    • EVALUACIÓN: Inspección y evaluación de la calidad de las muestras de datos demo.
    • PRESENTACIÓN: Mapa digital interactivo de ofertas de datos y condiciones de adquisición, informe escrito
  •  

2. Mejora de datos

Evalúe, mejore y consolide sus datos principales. Mejoras en los datos de alto rendimiento y bajo coste, eliminando las principales causas de sesgo, imprecisiones y ruido

La plataforma de evaluación de datos de Mosaic Factor incluye herramientas expertas de inspección y evaluación compatibles con cualquier tipo de datos. Las herramientas ayudan a verificar la calidad, la coherencia, la precisión, la densidad y el cumplimiento de la privacidad de los datos, y a detectar posibles sesgos en los datos.

Usamos nuestro Data Assessment Toolkit:

    • Evalúa sus datos principales y su compatibilidad con aplicaciones críticas de planificación, previsión y análisis.
    • Identifica mejoras en los datos de alto rendimiento y bajo coste, que eliminen las principales causas de sesgo, imprecisiones y ruido en los datos.
    • Mejora y consolida los datos del mundo real, con el fin de obtener modelos de IA más precisos y soluciones basadas en IA más fiables.
  •  

3. Generamos la oferta de servicios de datos (data-as-a-service): ayudamos a extraer valor de los datos mediante el uso de DaaS para proporcionar información valiosa a diferentes stakeholders.

    • Data Provisioning: ofreciendo acceso a diversos conjuntos de datos, abordando necesidades de datos específicas que pueden ser difíciles de satisfacer de forma independiente.
    • Data Management: gestionando el almacenamiento, la organización y el mantenimiento de grandes conjuntos de datos, garantizando el cumplimiento de la normativa y gestionando los derechos de acceso a los datos.
    • Data Analytics: integración de la oferta de DaaS, incluyendo las herramientas analíticas, lo que permite a las empresas obtener información de los datos a los que acceden.

Los casos de uso típicos con los que DaaS puede ser útil son:

    • Eficiencia operativa: mediante el análisis de los datos operativos, las empresas pueden identificar áreas de mejora y optimización de sus procesos.
    • Customer Insights: DDaaS puede proporcionar datos detallados de los clientes, lo que permite un marketing personalizado y un mejor servicio al cliente.
    • Análisis de mercado: nuestras empresas cliente usan DaaS para acceder a datos y tendencias de mercado, ayudándoles a tomar decisiones empresariales informadas.

Beneficios para empresas

    • Rentabilidad: al externalizar la gestión de datos a proveedores de DaaS, las empresas pueden reducir los costes asociados al mantenimiento de su propia infraestructura de datos.
    • Escalabilidad: las soluciones DaaS pueden escalar fácilmente para satisfacer las crecientes necesidades de datos de una empresa, proporcionando flexibilidad a medida que la empresa se expande.
    • Accesibilidad: los datos están disponibles bajo demanda, independientemente de la ubicación o la infraestructura del usuario, lo que facilita a las empresas el acceso y el uso de los datos cuando sea necesario.
    • Foco en las actividades core: con la externalización de la gestión de datos, las empresas pueden centrarse más en sus actividades principales y objetivos estratégicos, en lugar de en las complejidades del manejo de datos.

Las soluciones DaaS ofrecen una solución flexible, rentable y escalable para que las empresas gestionen y utilicen los datos, impulsando una mejor toma de decisiones y eficiencia operativa.

¿Tienes alguna pregunta?

Siempre estamos listos para ayudarte y responder tus preguntas.





    *Los campos marcados con un asterisco son obligatorios.

    Últimas noticias

    ¿Qué son los LLM ligeros?

    ¿Qué son los LLM ligeros?

    Empecemos definiendo qué es un LLM ¿Qué es un LLM? Los LLM (Large Language Models en inglés) son sistemas avanzados de IA capaces de comprender y generar diversas formas de contenido, como texto, código, imágenes, vídeo y audio. Estos modelos se entrenan con al menos...

    Productos mejorados con IA para mejorar la atención sanitaria

    Productos mejorados con IA para mejorar la atención sanitaria

    El pasado mes de junio, nuestra CMO y PM Anna Valli fue invitada a participar en la VI Conferencia Internacional sobre Activity and Behaviour Computing (ABC24) presidida por el profesor Sozo Inoue de Kyutech (Kyushu Institute of Technology, Japón) y patrocinada por el...

    IA explicable para diferentes sectores

    IA explicable para diferentes sectores

    Cuando aplicamos técnicas de IA confiables (trustworthy AI), siempre nos enfocamos en las soluciones de IA explicables que nos permiten desbloquear lo que hay detrás de un modelo de IA y hacerlo accesible a las diferentes partes interesadas, para que podamos confiar...

    Principales algoritmos para el modelado predictivo

    Principales algoritmos para el modelado predictivo

    Al hacer Modelos Predictivos, creamos algoritmos ad hoc para ayudar a nuestras empresas clientes a resolver problemas específicos.Estos algoritmos pueden variar según el problema que se necesite resolver. De hecho, seleccionar el algoritmo incorrecto no solo resultará...

    ¿Qué son los LLM ligeros?

    ¿Qué son los LLM ligeros?

    Empecemos definiendo qué es un LLM ¿Qué es un LLM? Los LLM (Large Language Models en inglés) son sistemas avanzados de IA capaces de comprender y generar diversas formas de contenido, como texto, código, imágenes, vídeo y audio. Estos modelos se entrenan con al menos...

    Productos mejorados con IA para mejorar la atención sanitaria

    Productos mejorados con IA para mejorar la atención sanitaria

    El pasado mes de junio, nuestra CMO y PM Anna Valli fue invitada a participar en la VI Conferencia Internacional sobre Activity and Behaviour Computing (ABC24) presidida por el profesor Sozo Inoue de Kyutech (Kyushu Institute of Technology, Japón) y patrocinada por el...

    IA explicable para diferentes sectores

    IA explicable para diferentes sectores

    Cuando aplicamos técnicas de IA confiables (trustworthy AI), siempre nos enfocamos en las soluciones de IA explicables que nos permiten desbloquear lo que hay detrás de un modelo de IA y hacerlo accesible a las diferentes partes interesadas, para que podamos confiar...